## FHWA GeoGauge Workshop 29 & 30 November, 2000 Background & Theory



# Why The GeoGauge?

#### To Meet A Need

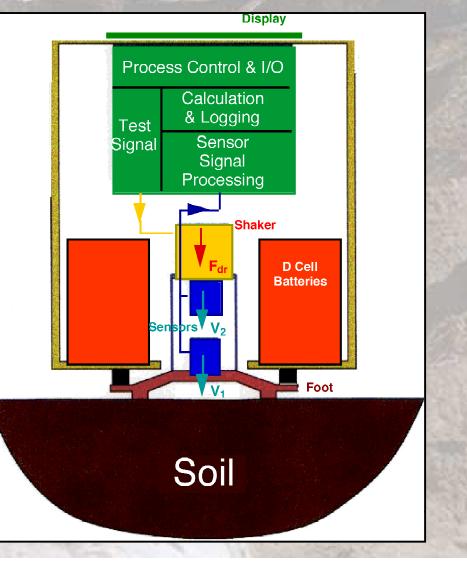
Relentless Pursuit of Lower Cost & Higher Quality

#### By Achieving A Goal

- Increased Precision of Design & Construction
  - Mechanistic Designs
  - Performance Specifications
  - Process Control
- Increased Continuity Between Design & Construction
  - Design Parameters Used to Evaluate Construction
  - Contractor Warranties

#### Through A Historically Successful Path

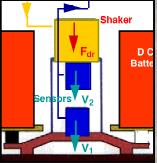
Structural Stiffness & Material Modulus




#### Design Description Physical Attributes Principle of Operation Operating Procedure Performance Alternatives



### **Physical Attributes**


- Size: 11" OD x 10" tall
  - 4.5" OD x 3.5" ID Foot
- Weight: 22 lb.
- Powered by 6 D-Cell Batteries
- IR Data Downloading
- Keypad User Interface





### **Operating Principle**





5

- At GeoGauge Frequencies & Stress, Impedance is Predominately Stiffness
- No Need for a Non-moving Displacement Reference
- Permits the Accurate Measurement of Small Displacements

$$F_{dr} = K_{flex} (X_2 - X_1)$$

$$K_{gr} = \frac{F_{dr}}{X_1}$$

$$\overline{K_{gr}} = K_{flex} \sum_{n=1}^{n} \frac{(X_2 - X_1)}{1 - X_1} = K_{flex} \sum_{n=1}^{n} \frac{(V_2 - V_1)}{V_1}$$



•

## **Operating Procedure**

- Inspect GeoGauge
- Power On
- Select Mode & Poisson's Ratio
- Seat the Foot
  - <u>></u> 60% Direct Contact
  - Moist Sand Assisted (1/4" to 1/8")
    - Rough & Irregular Surfaces
    - Smooth Hard Surfaces
- Take the Measurement: 75 Sec.
  - 15 Sec. of Noise
  - 60 Sec. of Signal
  - Results Displayed
    - Signal/Noise: > 3/1 (10 db)
    - Standard Deviation: a Measure of Foot Contact
    - Average Stiffness or Modulus (English or SI)
- Examine the Foot Print



Save Data

# Performance

Specification Precision Bias Validation & Correlation Standardization



# Specification

- Stiffness: 3 (17) to >70 (399) MN/m (klb/in)
- Young's Modulus: 26.2 (3.8) to > 607 (88) MPa (kpsi)
- Poisson's Ratio: Variable in 0.05 Increments
- Precision: Typically 3.9% Coefficient of Variation
- Bias: < 1% Coefficient of Variation
- Depth of Measurement: 22.9 cm (9 in)
- Battery Life: > 1,500 measurements
- Operating Temperature: 0°C to 38°C (32°F to 100°F)



#### Precision Single Gauge

|   | Date     | Site             | Material             | Typical Stiffness, M | Coeff. Of Var., % |      |                   |                   |
|---|----------|------------------|----------------------|----------------------|-------------------|------|-------------------|-------------------|
| 1 |          |                  |                      | Mean                 | 1σ                | Mean | 65%<br>Confidence | 95%<br>Confidence |
|   | 8/17/00  | Salisbury ByPass | Silty Sand           | 6.28                 | 0.28              | 4.08 | 6.01              | 7.94              |
|   | 9/20/00  | NM 44            | Sandy Clay Subgrade* | 11.33                | 0.37              | 3.31 | -                 | -                 |
|   | 10/13/00 | 16 Vegas Dr.     | Sility Clay**        | 8.86                 | 0.47              | 5.35 | 7.17              | 9.00              |
|   | 10/14/00 | 16 Vegas Dr.     | Full Depth Pavement* | 51.37                | 2.17              | 4.25 | 5.66              | 7.07              |
| - | 10/20/00 | 170/1270         | Graded GAB*          | 40.20                | 1.57              | 3.84 | 5.21              | 6.58              |
|   | 10/29/00 | Rutters          | Fat Clay*            | 12.74                | 0.35              | 2.67 | 3.13              | 3.59              |

\* Assisted Seating (moist sand)

\*\* Unprepared ground

Typical Coefficient Of Variation: 3.9%



Basis: 3 Gauges, 3 Operators & 470 Measurements

#### Precision Multiple Gauges

| Date    | Site           | Material             | No. of Measurements | Stiff | ness, MN/m | Coeff.of<br>Var. |
|---------|----------------|----------------------|---------------------|-------|------------|------------------|
|         |                |                      |                     | Mean  | 1σ         | %                |
| 11/7/0  | 0 16 Vegas Dr. | Sility Clay* *       | 12                  | 8.50  | 0.33       | 3.89             |
| 11/7/0  | 0 16 Vegas Dr. | Sility Clay* *       | 30                  | 9.94  | 0.39       | 3.91             |
| 11/8/0  | 0 16 Vegas Dr. | Full Depth Pavement* | 16                  | 44.83 | 1.72       | 3.83             |
| 11/24/0 | 0 16 Vegas Dr. | Sility Clay* *       | 10                  | 10.06 | 0.59       | 5.84             |

\* Assisted Seating (moist sand)

\*\* Unprepared ground

Statistics Based on Combined Measurements From Both Gauges

Basis: 2 Gauges, 1 Operator & 68 Measurements

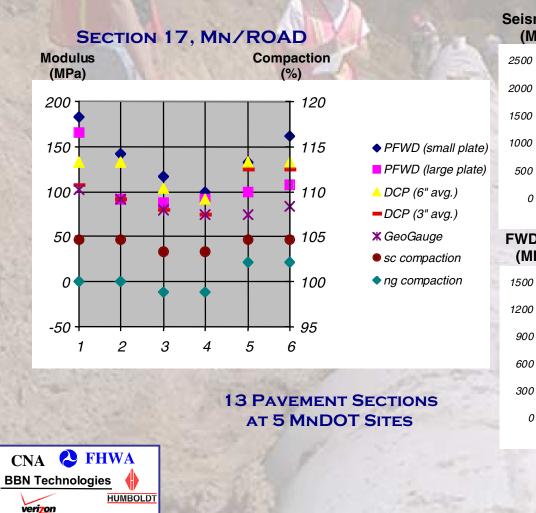


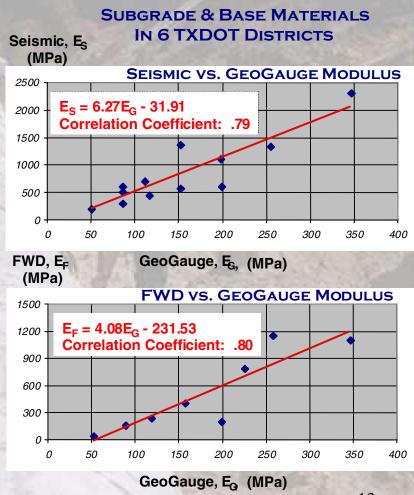


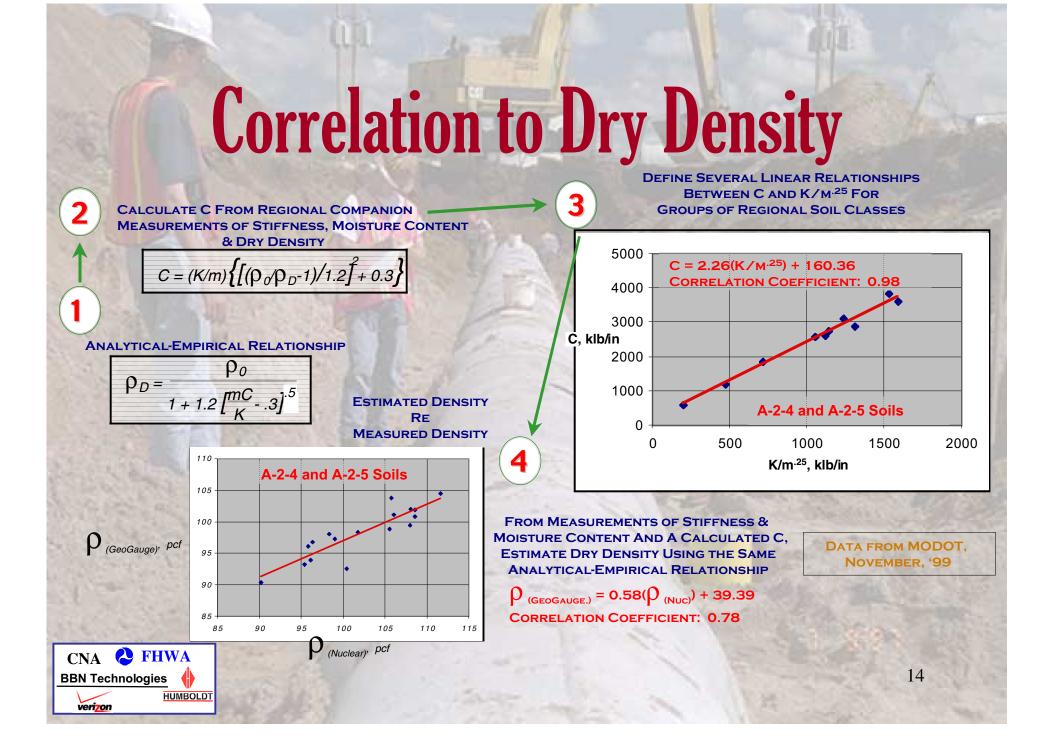
Reference: Moving Mass

- Known Mass: 10 kg (22 lb)
- 25 Known Frequencies: 100 to 196 Hz
- Stiffness =  $-j\omega^2 M$
- Coefficient of variation: < 1%</li>
- Basis: 100+ Measurements Over 18 Months







# Validation


- Nature of Measurement Validated via CNA Plate Load Tests
- Depth of Measurement, Bias & Effect of Boundaries Validated by Univ. of New Mexico



# **Correlation to Other Moduli**







# **Other Correlations**

- Resilient Modulus
- Unconfined Compressive Strength
- CBR
- Binkelman Beam
- Static Cone Penetrometer



## Standardization

- ASTM Standard Method
  - In-Place Stiffness & Modulus Measurement
- 1st ASTM D18.08 Ballot: 1 Negative (Resolved)
- 2nd ASTM D18.08 Ballot: To Be Completed 11/30
- ASTM D18 Ballot: Results Expected Early '01
- AASHTO Will Review Approved ASTM Standard



# **GeoGauge Alternatives**

| Method:<br>In-Place<br>Stiffness or<br>Modulus | Speed | Simplicity | Depth           | Precision | Bias | Production<br>Test * | Non-<br>Destructive<br>Test | Relationship<br>To Density<br>Exists |
|------------------------------------------------|-------|------------|-----------------|-----------|------|----------------------|-----------------------------|--------------------------------------|
| GeoGauge                                       | 1     | 100        | ~ 8"            | 1% to 10% | < 1% | Yes                  | Yes                         | Yes                                  |
| Impact Value<br>(Clegg)                        | 2     | 2          | ~ 4"            | 2% to 20% | ?    | No                   | No                          | ?                                    |
| Field CBR                                      | 4     | 4          | ~ 20"           | ?         | ?    | No                   | No                          | ?                                    |
| DCP                                            | 3     | 3          | Several<br>Feet | ?         | ?    | No                   | No                          | ?                                    |
| German<br>Plate Load                           | 3     | 3          |                 | ?         | ?    | No                   | No                          | ?                                    |
| Portable FWD<br>(Loadman)                      | 3     | 3          | ~ 10"           | ?         | ?    | No                   | No                          | ?                                    |
| D-SPA                                          | 5     | 5          | Several<br>Feet | ?         | ?    | No                   | No                          | ?                                    |

Speed: 1 = fastest, 5 = slowest

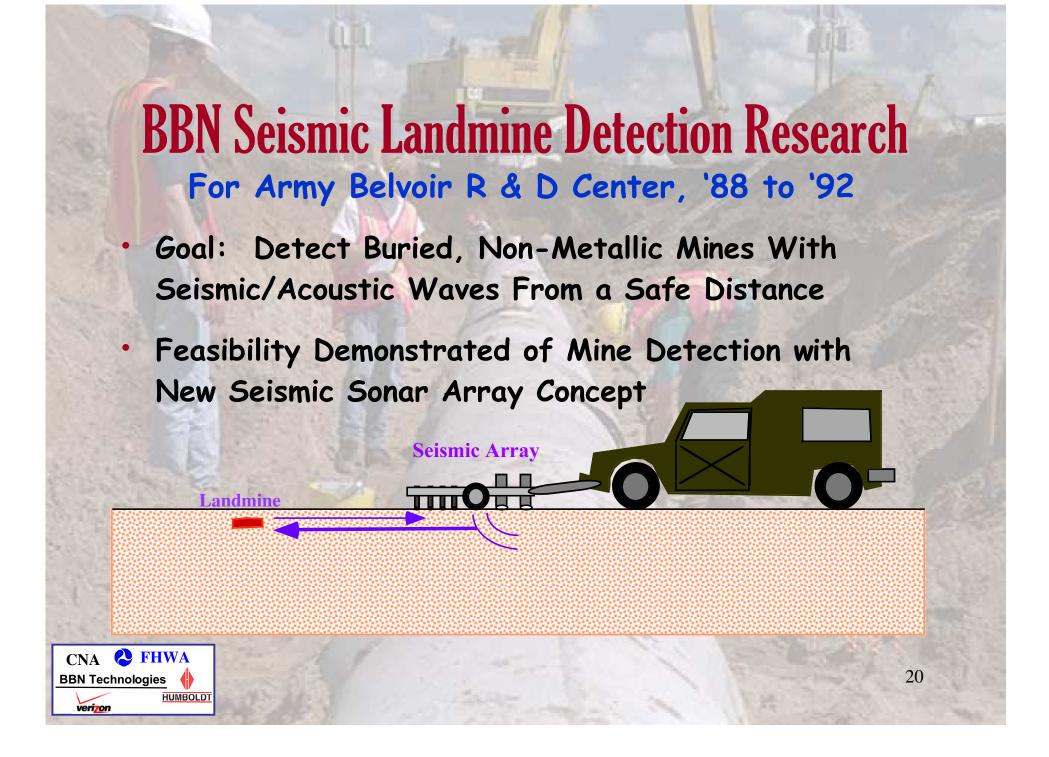
Simplicity: 1 = Simplest, 5 = Most Complex ? = Quantity Undefined

Production Test: One that does not delay or interfere with construction



### **Design History** The Origin of the Technology Dual Use Technology Development Approach

- Concept Formulation
- Proof-of-Principle Demonstration


CNA C FHWA BBN Technologies

Commercialization

# The Origin of The Technology

#### Seismic Landmine Detection

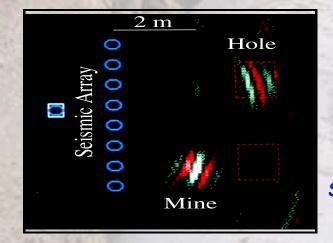




#### **BBN Shallow Soil Seismic/Acoustic Research**

- Soil Physics & Measurements
  - Soil Impedance

🔁 FHWA


HUMBOLDT

CNA

veri<del>7</del>0n

**BBN** Technologies

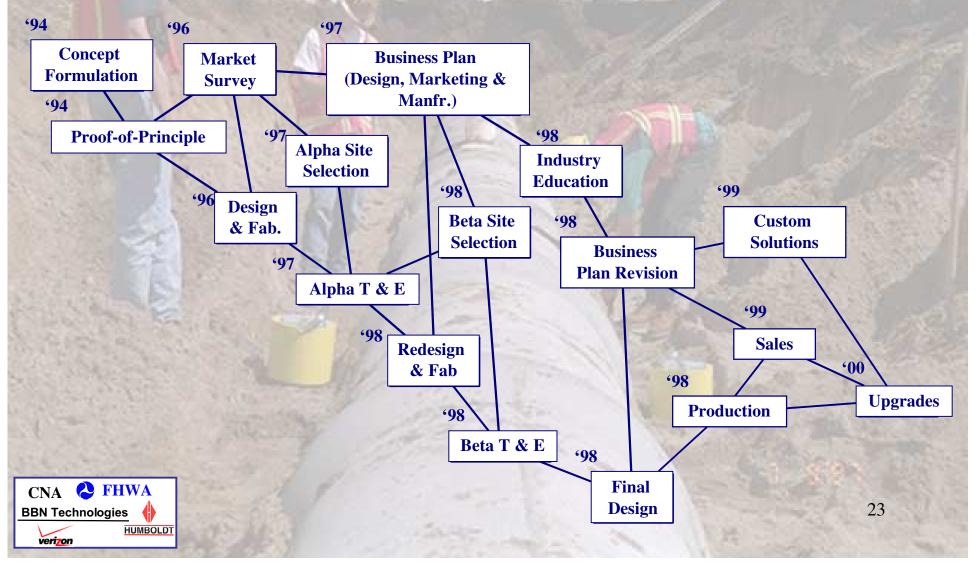
- Wave Propagation
- **Transducer Coupling Research**
- System Development & Displays





BBN Proprietary Weight-biased Geophones and Compact Vibrator Source

Seismic Sonar Display of Response of Mine


### **Dual Use Technology**

- Logical Transfer to Civil Application
- Transfer via DARPA TRP: '93 to '96
  - BBN, CNA, MTS & MnDOT Team
  - FHWA Designated Program Manager
  - Goal: Use of Stiffness for Evaluating Compaction
  - Approach
    - Define Engineering Requirements
    - Define Sales Potential
    - Prototype



Commercialize

### **Development Approach**



#### Concept Formulation Objectives

- Dynamically Measure Stiffness
  - No Absolute Reference Needed
  - Minimize Degradation by Noise & Physical Anomalies
- Suitable for Widespread Field Use
  - Materials & Process Control
  - Materials Characterization
- Real-Time, Statistically Meaningful Sampling
- Reasonable Time-to-Market



#### Concept Formulation Selected Attributes

- Accurate Over 3.8 to 28 kpsi min.
- Measurement Depth Typical of Lift Thickness (~8")
- Measurement Period of ~ 1 min.
- Precision: Coefficient of Variation < 5%
- Easy to Use: One Person Operation, No Penetration
- Portable: Small & Weighing < 30 lb.
- Rugged: As Good or Better Than Current Equip.
- Affordable: < \$6,000



#### Concept Formulation Design Issues

- Functional Requirements
- Test Signal Design
- Ground Coupling
- Transducers
- Signal Generation & Processing
- Mechanical Design & Packaging
- User Interface
- Calibration & Field Verification
- Basis: Soil Physics From Army & TRP Work



#### **Functional Requirements**

- Overburden Biasing Pressure: 4 to 5 psi
  - Dynamic Force Level
    - Sufficient for Signal-to-Noise of 3/1
    - Insufficient to Change Material Properties
  - Dynamic Range to Be Measured
- Ambient Ground Vibration: Amplitude & Frequency



## **Test Signal Design**

- Frequency Range: 100 to 200 Hz
  - Adequately High
    - Avoiding Ambient Vibration
    - Allowing Static Coupling of Biasing Pressure
  - Adequately Low
    - Avoiding All But Stiffness In Ground Impedance
    - Avoiding Internal Resonances
  - Adequately Broad
    - Enhancing Signal-to-Noise
    - Avoid Resonances From Physical Anomalies
- Wave Form
  - Stepped Steady-State



Duration: 2 Sec.

### **Ground Coupling**

Foot Geometry: Ring Shaped Plate

- Depth of Measurement
- Quality of Soil Contact (Coupling)
- Foot Properties
  - Low Mass
  - High Stiffness
- Static Biasing Weight: 22 lb.
  - Quality of Soil Contact (Coupling)
  - Meaningful Overburden Pressure
- **Resilient Mounts** 
  - Dynamic Decoupling
  - **Physical Stability**



veri<del>7</del>0n

#### Transducers Trade-Offs

- Shaker
  - Cost
  - Output Level, Bandwidth, Linearity, Ruggedness
- Motion & Force Sensors
  - Cost
  - Sensitivity, Noise, Dynamic Range, Bandwidth, Linearity, ...
- Mass Loaded Geophones Selected
  - Statically Coupled to Ground
  - Dynamically Decoupled From Ground



### **Signal Generation & Processing**

- Hardware Architecture
  - Analog Digital Marriage
- Algorithms
- Numerical Values of Processing Parameters
- Hardware Devices
  - Cost
  - Accuracy & Precision, Dynamic Range, Power, ...
- Hardware Layout & Packaging
  - Discrete vs. Surface Mount
- Software



### **Mechanical Design & Packaging**

- Structural Integrity
  - Manufacturable, Testable, Repairable & Upgradeable
    - Modularity
- Consistency With Function
  - Stiffness & Mass
  - Frequency Response
- Survivability: Mechanical & Environmental



### **User Interface**

- Cost
- · Off-the-Shelf
- Presets vs. Operator Control
- Information: Displayed & Stored
- Engineering Units



### **Calibration & Field Verification**

#### Method

- Standard Stiffness vs. Standard Mass
- Factory Cal. vs. Field Verification
- Calibration Algorithm
  - Estimation of Gauge Stiffness
- Standard Mass Implementation
  - Factory Calibration: < 1% Coeff. of Variation</li>
    - Value of Mass : 22 lb.
    - Fixture: Gauge Bolted to Isolated Mass
  - Field Verification: ~ 5% Coeff. of Variation
    - Value of Mass : 22 lb.
    - Fixture: Mass Bolted & Hung From Gauge



## **Proof-of-Principle: '94**

#### **CNA Consulting Engineers**



#### **Proof-of-Principle (1994)**

- Partners (2 agencies, 2 contractors)
  - Minnesota DOT
  - Metropolitan (Mpls/St. Paul) Council Env. Services
  - Johnson Brothers Corporation
  - Lametti and Sons
- Technical
  - Does it work / What do we measure?
  - What are the "preferred" measurement features?
- Market Forces



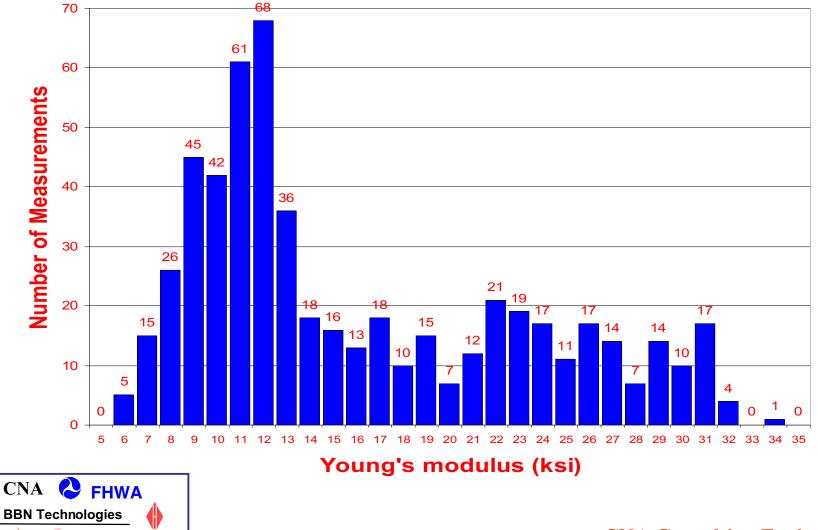
### **1994 Technical Proof-of-Principle**

- Ground coupling
- Foot design
- Reliability & repeatability
- Densification during testing
- Machine weight
- Soil moisture content
- Signal to noise ratio / drive level
- Depth of measurement
- Frequency range / frequency dependence



### **Summary of Minnesota Field Testing**

| Site                       | Description                                                                                      | Cooperative<br>Partners | Soil Description                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|
| Blaine Interceptor         | deep interceptor sewer,<br>constructed by trench and<br>fill                                     |                         | Recompacted trench backfill at surface; deep natural & recompacted soil |
| Mendota TH 110,<br>55 & 13 | large highway project,<br>testing done on or near<br>eastbound TH 110 east of<br>TH 55 crossover | JBC                     | Roadway subgrade; dense<br>natural soil                                 |
| Ŭ                          | large highway project,<br>testing done on an en-<br>trance ramp to<br>westbound TH 55            | MnDOT                   | Roadway subgrade                                                        |




### **Summary of Field Testing**

| Site                             | Locations | Stiffness<br>Measurements | Background<br>Noise Datasets |
|----------------------------------|-----------|---------------------------|------------------------------|
| Massachusetts                    | 3         | 200                       | na                           |
| Blaine Interceptor               | 22        | 188                       | 12                           |
| Mendota<br>TH 110, 55 & 13       | 36        | 321                       | 7                            |
| Inver Grove Heights<br>TH 55 & 3 | 14        | 50                        | 4                            |



#### **Distribution of Field Data**



HUMBOLDT

veri7on

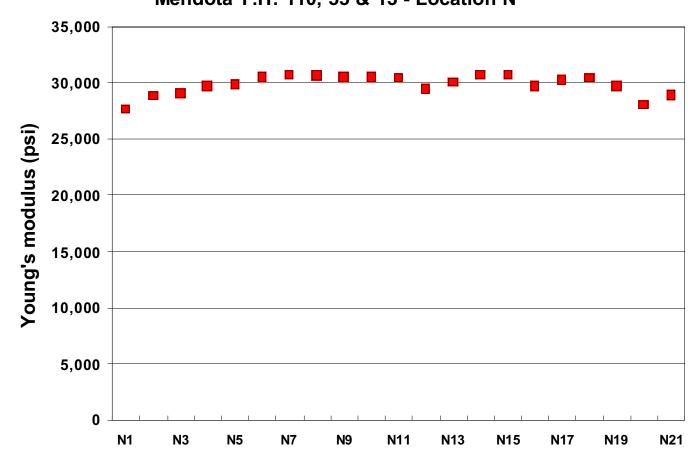
#### **Proof-of-Principle Apparatus**





#### **Proof-of-Principle Apparatus (close-up)**

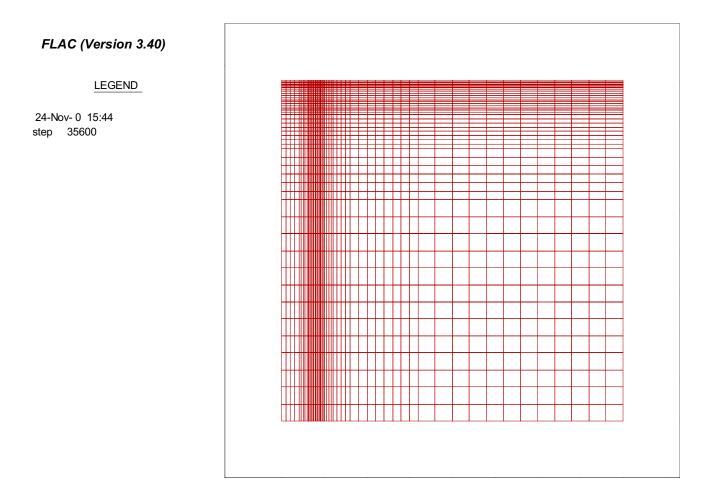





#### **Ground Coupling & Foot Design**

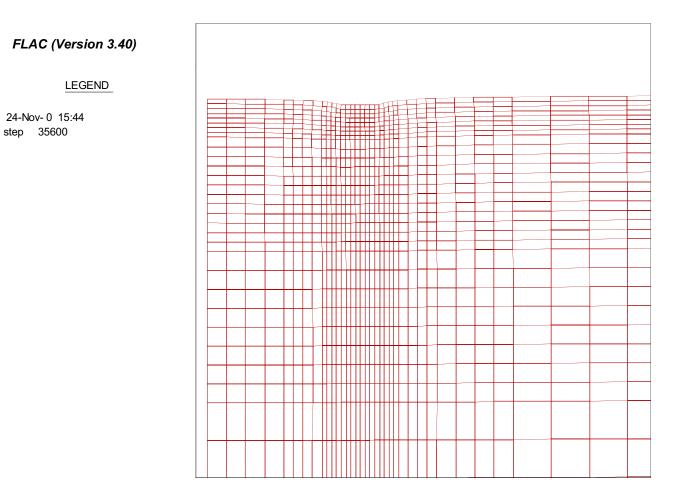





#### **Repeatability, Densification, Coupling**



Mendota T.H. 110, 55 & 13 - Location N



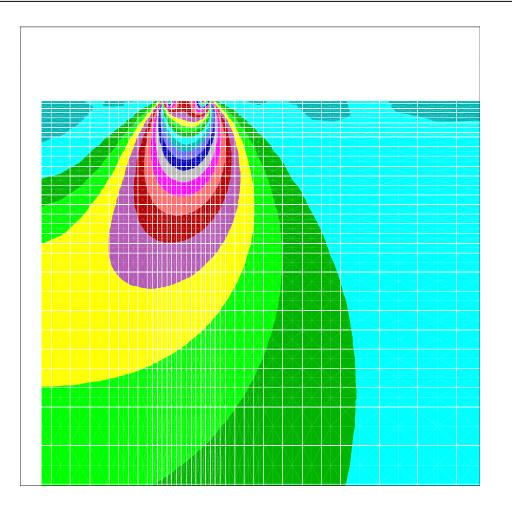

#### Modeling





#### **Displacements**






#### **Stresses**

#### FLAC (Version 3.40)

LEGEND

24-Nov- 0 15:44 step 35600



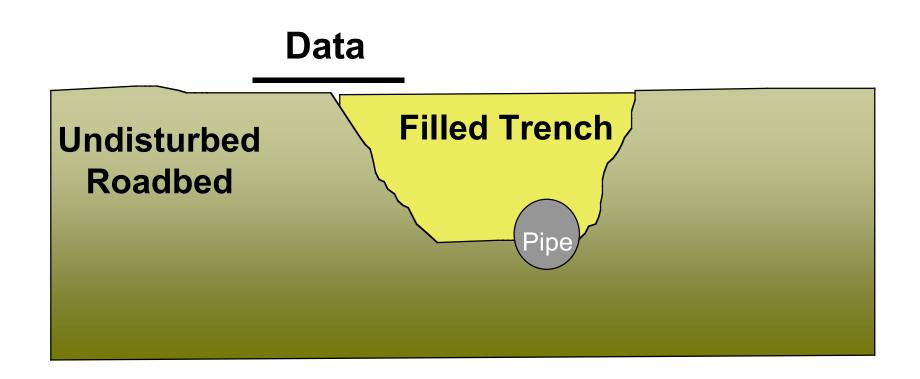


#### **Stresses**

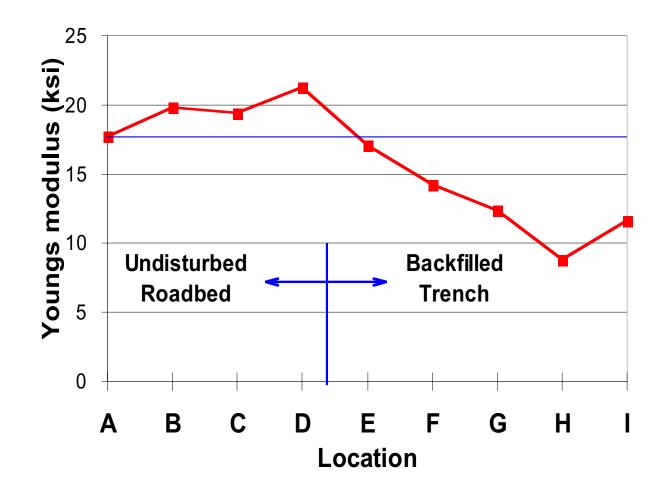
#### FLAC (Version 3.40)

LEGEND

24-Nov- 0 15:44 step 35600

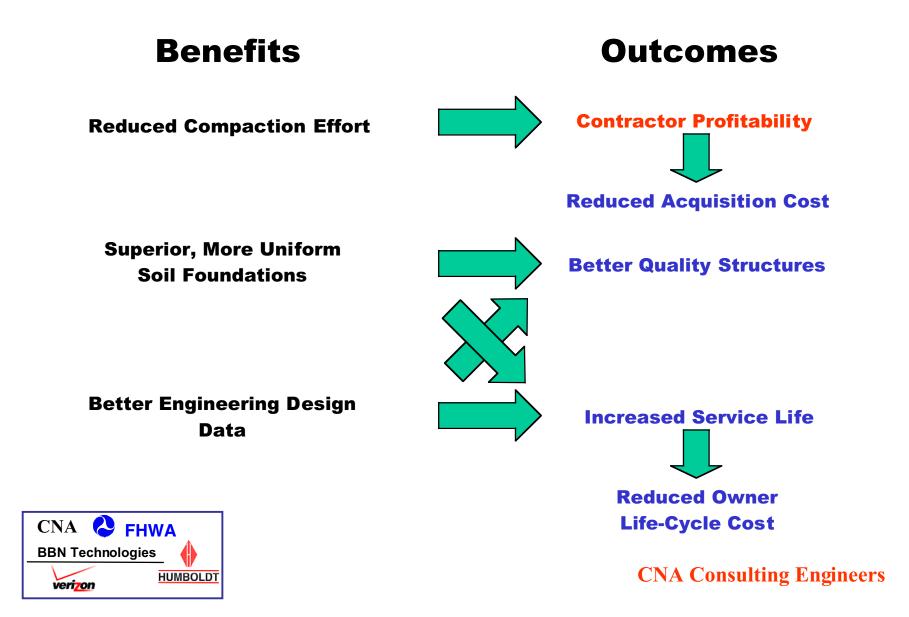



#### **Backfilled Trench Example**






#### **Backfilled Trench Example**










#### **Market Driving Forces**



### **Industry Feedback**

- Overcompaction & undercompaction occur
- Uniform compaction is desirable
- Experienced inspectors vs. measurements
- Agency standards & acceptance
- Documented results
- Demonstration projects
- Process control concepts



# Commercialization

Design Validation: '97 to '98 Marketing: '96 to '00 Production: '98 to '00



### **Design Validation**

- Alpha
  - Field Trials: MN, NY & TX
  - Construction Noise: Freq. Shift & Improved Filtering
  - Calibration: Soil vs. Elastomer vs. Mass
  - Relationship Between Density & Modulus
- Beta
  - Field Trials: MN, TX, NC, FL, OH, CA, NJ & MO
  - Usability & Reliability
  - Manufacturing & Test Methods Development
  - Establish Precision & Bias
- Standards Development



### Marketing

- Market Survey
- Business Plan Development & Evolution
- Alpha & Beta Site Selection & Lessons Learned
- Education: The Value of Stiffness & Modulus
- Custom Solutions: Realizing Immediate Benefits
- Market Driven Product Improvements



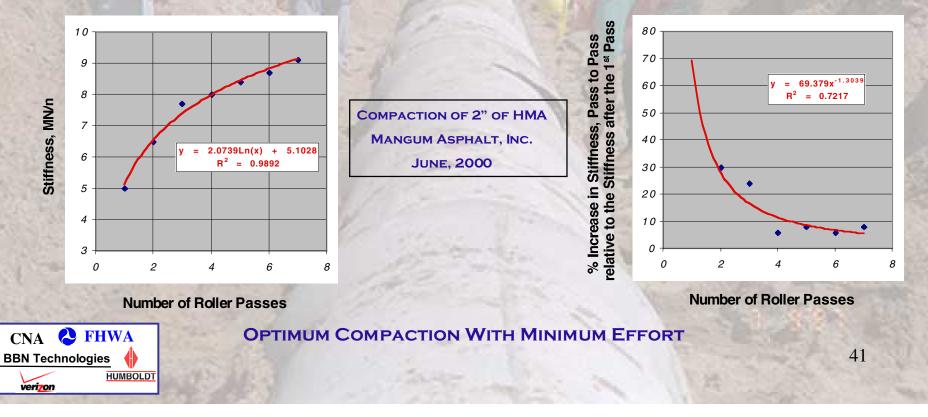
# Production

- Manufacturing Plan: 10s to 100s annually
- Design Manufacturability
- Material Sourcing
- Manufacturing, QA & QC Methods
  - Training

•

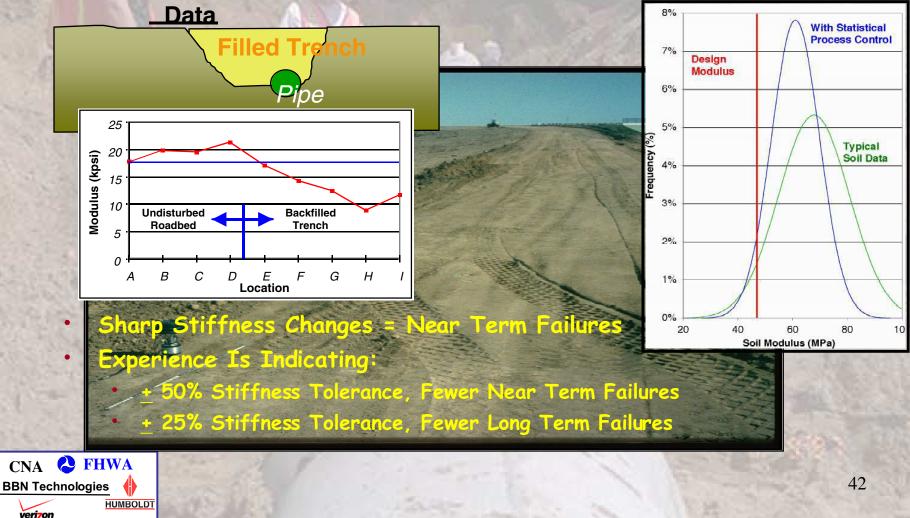
Facilities




•

# Enabling the Benefits of Stiffness & Modulus Today Control of the Compaction Process Mitigating the Risk of Pavement Failure Control of Stabilized Fill Quality




### **Control of the Compaction Process**

- Compaction of A Layer Is Only As Good As the Supporting Material Will Allow
- Directly Measure Compaction (Rate of Increase in Stiffness) As a Function of Effort
- When the Rate Is Approx. Constant, the Compaction Is Optimized
- ~ 30% Reduction in Compactive Effort Possible



### **Mitigating the Risk of Pavement Failure**

More Uniform Stiffness = More Time Between Failures



### **Control of Stabilized Fill Quality**

- "Is the Fill Hard Enough?"
- "Has Rain Inhibited Stabilization?"
- "Can I Customize Stabilization?"
- GeoGauge Can Enable:

🔁 FHWA


HUMBOLDT

CNA

veri7on

**BBN** Technologies

- Monitoring of Material Cure Rate
- Direct Measurement of Material Modulus
- Laboratory Design of Custom Mixes & Determination of Indexes for Evaluating Construction
- GeoGauge Specified By USAF for Runway Infield Stabilization
  - Used to Estimate Increases in CBR



### **Some Other Applications**

- Specification Development
- Mechanistic Design Validation
- Buried Structures QC
- Utility Back-Fills QC
- Determination of HMA "Tender Zone"
- Evaluation of Controlled Low Strength Materials
- Quantification of Soil-Cement Micro-Cracking
- Cold Mix Asphalt QC

