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FHWA GeoGauge WorkshopFHWA GeoGauge Workshop
29 & 30 November, 200029 & 30 November, 2000

Background & TheoryBackground & Theory
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Why The GeoGauge?Why The GeoGauge?
•• To Meet A NeedTo Meet A Need

•• Relentless Pursuit of Lower Cost & Higher QualityRelentless Pursuit of Lower Cost & Higher Quality

•• By Achieving A GoalBy Achieving A Goal
•• Increased Precision of Design & ConstructionIncreased Precision of Design & Construction

•• Mechanistic DesignsMechanistic Designs
•• Performance SpecificationsPerformance Specifications
•• Process ControlProcess Control

•• Increased Continuity Between Design & ConstructionIncreased Continuity Between Design & Construction
•• Design Parameters Used to Evaluate ConstructionDesign Parameters Used to Evaluate Construction
•• Contractor WarrantiesContractor Warranties

•• Through A Historically Successful PathThrough A Historically Successful Path
•• Structural Stiffness & Material ModulusStructural Stiffness & Material Modulus
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Design DescriptionDesign Description
Physical AttributesPhysical Attributes

Principle of OperationPrinciple of Operation
Operating ProcedureOperating Procedure

PerformancePerformance
AlternativesAlternatives
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Physical AttributesPhysical Attributes

• Size: 11” OD x 10” tall

• 4.5” OD x 3.5” ID Foot

• Weight: 22 lb.

• Powered by 6 D-Cell
Batteries

• IR Data Downloading

• Keypad User Interface
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Operating PrincipleOperating Principle

• At GeoGauge Frequencies & Stress, Impedance is Predominately
Stiffness

• No Need for a Non-moving Displacement Reference

• Permits the Accurate Measurement of Small Displacements

Stiffness

Modulus

Resistance of a Lift
to Deformation

Resistance of a Material
to Deformation

Foot Radius
&

Poisson’s Ratio

Fdr = Kflex (X2 - X1)

Kgr = 
Fdr

X1

Kgr  = K flex Σ
1

n
(X2 - X1)

X1
Σ

1

n (V2 - V1)

V1

= Kflex

n n
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Operating ProcedureOperating Procedure
• Inspect GeoGauge
• Power On
• Select Mode & Poisson’s Ratio
• Seat the Foot

• > 60% Direct Contact
• Moist Sand Assisted (1/4” to 1/8”)

• Rough & Irregular Surfaces
• Smooth Hard Surfaces

• Take the Measurement:  75 Sec.
• 15 Sec. of Noise
• 60 Sec. of Signal
• Results Displayed

• Signal/Noise: > 3/1 (10 db)
• Standard Deviation:  a Measure of Foot Contact
• Average Stiffness or Modulus (English or SI)

• Examine the Foot Print
• Save Data
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PerformancePerformance
Specification

Precision
Bias

Validation & Correlation
Standardization
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SpecificationSpecification
• Stiffness:  3 (17) to >70 (399) MN/m (klb/in)

• Young’s Modulus:  26.2 (3.8) to > 607 (88) MPa (kpsi)

• Poisson’s Ratio:  Variable in 0.05 Increments

• Precision: Typically 3.9% Coefficient of Variation

• Bias:  < 1% Coefficient of Variation

• Depth of Measurement:  22.9 cm (9 in)

• Battery Life:  > 1,500 measurements

• Operating Temperature:  0°C to 38°C (32°F to 100°F)
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PrecisionPrecision

• Typical Coefficient Of Variation:  3.9%

• Basis:  3 Gauges, 3 Operators & 470 Measurements

Single Gauge

Date S i t e M a t e r i a l

Mean 1 σ Mean
65% 

Confidence
95% 

Confidence

8 / 1 7 / 0 0 Salisbury ByPass Silty Sand 6.28 0.28 4.08 6.01 7.94

9 / 2 0 / 0 0 NM 44 Sandy Clay Subgrade* 11.33 0.37 3.31 - -

1 0 / 1 3 / 0 0 16 Vegas Dr. Sility Clay* * 8.86 0.47 5.35 7.17 9.00

1 0 / 1 4 / 0 0 16 Vegas Dr. Full Depth Pavement* 51.37 2.17 4.25 5.66 7.07

1 0 / 2 0 / 0 0 I70 / I270 Graded GAB* 40.20 1.57 3.84 5.21 6.58

1 0 / 2 9 / 0 0 Rutters Fat Clay* 12.74 0.35 2.67 3.13 3.59

*  Assisted Seating (moist sand)
** Unprepared ground

Coeff. Of Var., %Typical Stiffness, MN/m
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Date S i t e M a t e r i a l No. of Measurements
Coeff. of 

V a r .

Mean 1σ %

1 1 / 7 / 0 0 16 Vegas Dr. Sility Clay* * 1 2 8.50 0.33 3.89

1 1 / 7 / 0 0 16 Vegas Dr. Sility Clay* * 3 0 9.94 0.39 3.91

1 1 / 8 / 0 0 16 Vegas Dr. Full Depth Pavement* 1 6 44.83 1.72 3.83

1 1 / 2 4 / 0 0 16 Vegas Dr. Sility Clay* * 1 0 10.06 0.59 5.84

*  Assisted Seating (moist sand)
** Unprepared ground

Stiffness, MN/m

PrecisionPrecision

• Statistics Based on Combined Measurements From Both Gauges

• Basis:  2 Gauges, 1 Operator & 68 Measurements

Multiple Gauges
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BiasBias
• Reference:  Moving Mass

• Known Mass:  10 kg (22 lb)

• 25 Known Frequencies:  100 to 196 Hz

• Stiffness = -jω2M

• Coefficient of variation:  < 1%

• Basis:  100+ Measurements Over 18
Months
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ValidationValidation

• Nature of Measurement Validated via CNA Plate
Load Tests

• Depth of Measurement, Bias & Effect of Boundaries
Validated by Univ. of New Mexico
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Correlation to Other ModuliCorrelation to Other Moduli
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sc compaction

ng compaction

Section 17, Mn/ROAD

13 Pavement Sections

at 5 MnDOT Sites

Modulus
(MPa)

Compaction
(%)

Subgrade & Base Materials

In 6 TXDOT Districts

GeoGauge, EG,  (MPa)

EF = 4.08EG - 231.53
Correlation Coefficient:  .80

FWD vs. GeoGauge Modulus

FWD, EF
(MPa)

GeoGauge, EG,  (MPa)

Seismic vs. GeoGauge Modulus

ES = 6.27EG - 31.91
Correlation Coefficient:  .79

Seismic, ES
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Correlation to Dry DensityCorrelation to Dry Density
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ρD =
ρ0

1 + 1.2 [      - .3].5mC
K

.5

Analytical-Empirical Relationship

C = (K/m){[(ρ0/ρD-1)/1.2] + 0.3}2

Calculate C From Regional Companion

Measurements of Stiffness, Moisture Content

& Dry Density

Define Several Linear Relationships

Between C and K/m
.25

 For

Groups of Regional Soil Classes

From Measurements of Stiffness &

Moisture Content And A Calculated C,

Estimate Dry Density Using the Same

Analytical-Empirical Relationship

A-2-4 and A-2-5 Soils

C = 2.26(K/m
.25

) + 160.36

Correlation Coefficient:  0.98

Estimated Density

Re

Measured Density

ρ (GeoGauge),  pcf

ρ (Nuclear),  pcf

A-2-4 and A-2-5 Soils

ρ    
(GeoGauge.)

 = 0.58(ρ 
(Nuc)

) + 39.39

Correlation Coefficient:  0.78

22

11

33

44

Data from MODOT,

November, ‘99

C, klb/in

K/m.25, klb/in

C, klb/in
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Other CorrelationsOther Correlations

• Resilient Modulus
• Unconfined Compressive Strength
• CBR
• Binkelman Beam
• Static Cone Penetrometer
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StandardizationStandardization
• ASTM Standard Method

• In-Place Stiffness & Modulus Measurement

• 1st ASTM D18.08 Ballot:  1 Negative (Resolved)
• 2nd ASTM D18.08 Ballot: To Be Completed 11/30
• ASTM D18 Ballot:  Results Expected Early ‘01
• AASHTO Will Review Approved ASTM Standard
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GeoGauge AlternativesGeoGauge Alternatives
Method:
In-Place

Stiffness or
Modulus

Speed Simplicity Depth Precision Bias Production
Test

Non-
Destructive

Test

Relationship
To Density

Exists
GeoGauge 1 1 ~ 8" 1% to 10% < 1% Yes Yes Yes

Impact Value
(Clegg)

2 2 ~ 4" 2% to 20% ? No No ?

Field CBR 4 4 ~ 20" ? ? No No ?
DCP 3 3 Several

Feet
? ? No No ?

German
Plate Load

3 3 ? ? No No ?

Portable FWD
(Loadman)

3 3 ~ 10" ? ? No No ?

D-SPA 5 5 Several
Feet

? ? No No ?

           Speed:  1 = fastest,  5 = slowest           Simplicity:  1 = Simplest,  5 = Most Complex      ? = Quantity Undefined

*Production Test:  One that does not delay or interfere with construction

*
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Design HistoryDesign History
The Origin of the Technology

Dual Use Technology
Development Approach

• Concept Formulation
• Proof-of-Principle Demonstration
• Commercialization
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The Origin of The TechnologyThe Origin of The Technology

Seismic Landmine Detection
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BBN Seismic Landmine Detection ResearchBBN Seismic Landmine Detection Research

• Goal:  Detect Buried, Non-Metallic Mines With
Seismic/Acoustic Waves From a Safe Distance

• Feasibility Demonstrated of Mine Detection with
New Seismic Sonar Array Concept

For Army Belvoir R & D Center, ‘88 to ‘92

Seismic Array

Landmine
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BBN Shallow Soil Seismic/Acoustic ResearchBBN Shallow Soil Seismic/Acoustic Research

• Soil Physics & Measurements
• Soil Impedance
• Wave Propagation

• Transducer Coupling Research

• System Development & Displays

Hole

Mine

Se
ism

ic 
Ar

ray

2 m

Seismic Sonar Display of  Response of Mine

BBN Proprietary Weight-biased
Geophones and Compact Vibrator Source
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Dual Use TechnologyDual Use Technology

• Logical Transfer to Civil Application

• Transfer via DARPA TRP:  ‘93 to ‘96

• BBN, CNA, MTS & MnDOT Team

• FHWA Designated Program Manager

• Goal: Use of Stiffness for Evaluating Compaction

• Approach
• Define Engineering Requirements
• Define Sales Potential
• Prototype
• Commercialize
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Development ApproachDevelopment Approach
Concept 

Formulation

‘94

Proof-of-Principle

‘94

Market 
Survey

‘96

Design 
& Fab.

‘96

Alpha Site 
Selection

‘97

Alpha T & E
‘97

Business Plan 
(Design, Marketing & 

Manfr.)

‘97

Redesign 
& Fab

‘98

Beta Site 
Selection

‘98

Beta T & E

‘98

Industry 
Education

‘98

Business 
Plan Revision

‘98

Final 
Design

‘98

Production

‘98

Sales

‘99

Custom 
Solutions

‘99

Upgrades

‘00
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Concept FormulationConcept Formulation

• Dynamically Measure Stiffness
• No Absolute Reference Needed
• Minimize Degradation by Noise & Physical Anomalies

• Suitable for Widespread Field Use
• Materials & Process Control
• Materials Characterization

• Real-Time, Statistically Meaningful Sampling
• Reasonable Time-to-Market

Objectives
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Concept FormulationConcept Formulation

• Accurate Over 3.8 to 28 kpsi min.
• Measurement Depth Typical of Lift Thickness (~8”)
• Measurement Period of ~ 1 min.
• Precision:  Coefficient of Variation < 5%
• Easy to Use:  One Person Operation, No Penetration
• Portable:  Small & Weighing < 30 lb.
• Rugged:  As Good or Better Than Current Equip.
• Affordable:  < $6,000

Selected Attributes
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Concept FormulationConcept Formulation

• Functional Requirements
• Test Signal Design
• Ground Coupling
• Transducers
• Signal Generation & Processing
• Mechanical Design & Packaging
• User Interface
• Calibration & Field Verification
• Basis:  Soil Physics From Army & TRP Work

Design Issues
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Functional RequirementsFunctional Requirements

• Overburden Biasing Pressure:  4 to 5 psi
• Dynamic Force Level

• Sufficient for Signal-to-Noise of 3/1
• Insufficient to Change Material Properties

• Dynamic Range to Be Measured
• Ambient Ground Vibration:  Amplitude & Frequency



28
FHWA

BBN Technologies

CNA

Test Signal DesignTest Signal Design
• Frequency Range:  100 to 200 Hz

• Adequately High
• Avoiding Ambient Vibration
• Allowing Static Coupling of Biasing Pressure

• Adequately Low
• Avoiding All But Stiffness In Ground Impedance
• Avoiding Internal Resonances

• Adequately Broad
• Enhancing Signal-to-Noise
• Avoid Resonances From Physical Anomalies

• Wave Form
• Stepped Steady-State
• Duration: 2 Sec.
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Ground CouplingGround Coupling
• Foot Geometry:  Ring Shaped Plate

• Depth of Measurement
• Quality of Soil Contact (Coupling)

• Foot Properties
• Low Mass
• High Stiffness

• Static Biasing Weight:  22 lb.
• Quality of Soil Contact (Coupling)
• Meaningful Overburden Pressure

• Resilient Mounts
• Dynamic Decoupling
• Physical Stability
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TransducersTransducers

• Shaker
• Cost
• Output Level, Bandwidth, Linearity, Ruggedness

• Motion & Force Sensors
• Cost
• Sensitivity, Noise, Dynamic Range, Bandwidth, Linearity, ...

• Mass Loaded Geophones Selected
• Statically Coupled to Ground
• Dynamically Decoupled From Ground

Trade-Offs
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Signal Generation & ProcessingSignal Generation & Processing

• Hardware Architecture
• Analog - Digital Marriage

• Algorithms
• Numerical Values of Processing Parameters
• Hardware Devices

• Cost
• Accuracy & Precision, Dynamic Range, Power, …

• Hardware Layout & Packaging
• Discrete vs. Surface Mount

• Software
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Mechanical Design & PackagingMechanical Design & Packaging

• Structural Integrity
• Manufacturable, Testable, Repairable & Upgradeable

• Modularity

• Consistency With Function
• Stiffness & Mass
• Frequency Response

• Survivability:  Mechanical & Environmental
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User InterfaceUser Interface

• Cost
• Off-the-Shelf
• Presets vs. Operator Control
• Information:  Displayed & Stored
• Engineering Units
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Calibration & Field VerificationCalibration & Field Verification
• Method

• Standard Stiffness vs. Standard Mass
• Factory Cal. vs. Field Verification

• Calibration Algorithm
• Estimation of Gauge Stiffness

• Standard Mass Implementation
• Factory Calibration:  < 1% Coeff. of Variation

• Value of Mass : 22 lb.
• Fixture:  Gauge Bolted to Isolated Mass

• Field Verification: ~ 5% Coeff. of Variation
• Value of Mass : 22 lb.
• Fixture:  Mass Bolted & Hung From Gauge
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Proof-of-Principle: ‘94Proof-of-Principle: ‘94

CNA Consulting Engineers
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Proof-of-Principle (1994)

• Partners (2 agencies, 2 contractors)
– Minnesota DOT

– Metropolitan (Mpls/St. Paul) Council Env. Services

– Johnson Brothers Corporation

– Lametti and Sons

• Technical
– Does it work / What do we measure?

– What are the “preferred” measurement features?

• Market Forces
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1994 Technical  Proof-of-Principle

• Ground coupling
• Foot design
• Reliability & repeatability
• Densification during testing
• Machine weight
• Soil moisture content
• Signal to noise ratio / drive level
• Depth of measurement
• Frequency range / frequency dependence
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Summary of Minnesota Field Testing

Site Description Cooperative
Partners

Soil Description

Blaine Interceptor deep interceptor sewer,
constructed by trench and
fill

MCWWS Recompacted trench backfill at
surface; deep natural &
recompacted soil

Mendota TH 110,
55 & 13

large highway project,
testing done on or near
eastbound TH 110 east of
TH 55 crossover

MnDOT
JBC

Roadway subgrade; dense
natural soil

Inver Grove
Heights TH 55 & 3

large highway project,
testing done on an en-
trance ramp to
westbound TH 55

MnDOT Roadway subgrade
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Summary of Field Testing

Site Locations Stiffness
Measurements

Background
Noise Datasets

Massachusetts 3 200 na

Blaine Interceptor 22 188 12

Mendota
TH 110, 55 & 13

36 321 7

Inver Grove Heights
TH 55 & 3

14 50 4
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Distribution of Field Data
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Proof-of-Principle Apparatus
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Proof-of-Principle Apparatus (close-up)
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Ground Coupling & Foot Design
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Repeatability, Densification, Coupling
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Modeling

    FLAC (Version 3.40)

LEGEND

   24-Nov- 0  15:44
  step     35600
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Displacements

    FLAC (Version 3.40)

LEGEND

   24-Nov- 0  15:44
  step     35600
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Stresses

    FLAC (Version 3.40)

LEGEND

   24-Nov- 0  15:44
  step     35600
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Stresses

    FLAC (Version 3.40)

LEGEND

   24-Nov- 0  15:44
  step     35600
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Backfilled Trench Example
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Backfilled Trench Example

Filled Trench

Pipe

Undisturbed
Roadbed

Data
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Backfilled Trench Example
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Market Driving Forces

Reduced Compaction Effort Contractor Profitability

Superior, More Uniform

Soil Foundations Better Quality Structures

Better Engineering Design

Data
Increased Service Life

Reduced Owner

Life-Cycle Cost

Reduced Acquisition Cost

Benefits Outcomes
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Industry Feedback

• Overcompaction & undercompaction occur

• Uniform compaction is desirable

• Experienced inspectors vs. measurements

• Agency standards & acceptance

• Documented results

• Demonstration projects

• Process control concepts
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CommercializationCommercialization

Design Validation: ‘97 to ‘98
Marketing: ‘96 to ‘00
Production:  ‘98 to ‘00
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Design ValidationDesign Validation
• Alpha

• Field Trials: MN, NY & TX
• Construction Noise: Freq. Shift & Improved Filtering
• Calibration: Soil vs. Elastomer vs. Mass
• Relationship Between Density & Modulus

• Beta
• Field Trials:  MN, TX, NC, FL, OH, CA, NJ & MO
• Usability & Reliability
• Manufacturing & Test Methods Development
• Establish Precision & Bias

• Standards Development
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MarketingMarketing

• Market Survey

• Business Plan Development & Evolution

• Alpha & Beta Site Selection & Lessons Learned

• Education:  The Value of Stiffness & Modulus

• Custom Solutions:  Realizing Immediate Benefits

• Market Driven Product Improvements
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ProductionProduction

• Manufacturing Plan: 10s to 100s annually

• Design Manufacturability

• Material Sourcing

• Manufacturing, QRA & QC Methods

• Training

• Facilities
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Enabling the Benefits ofEnabling the Benefits of

Stiffness & Modulus TodayStiffness & Modulus Today
Control of the Compaction Process

Mitigating the Risk of Pavement Failure
Control of Stabilized Fill Quality
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Control of the Compaction ProcessControl of the Compaction Process
• Compaction of A Layer Is Only As Good As the Supporting Material Will Allow
• Directly Measure Compaction (Rate of Increase in Stiffness) As a Function of Effort
• When the Rate Is Approx. Constant, the Compaction Is Optimized
• ~ R30% Reduction in Compactive Effort Possible

Number of Roller Passes Number of Roller Passes

Compaction of 2” of HMA

Mangum Asphalt, Inc.

June, 2000

Optimum Compaction With Minimum Effort

y = 69.379x- 1 . 3 0 3 9

R2  = 0.7217
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Filled Trench

Pipe

Data
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Mitigating the Risk of Pavement FailureMitigating the Risk of Pavement Failure

• Sharp Stiffness Changes = Near Term Failures
• Experience Is Indicating:

• + 50% Stiffness Tolerance, Fewer Near Term Failures
• + 25% Stiffness Tolerance, Fewer Long Term Failures

More Uniform Stiffness = More Time Between FailuresMore Uniform Stiffness = More Time Between Failures
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Control of Stabilized Fill QualityControl of Stabilized Fill Quality
• “Is the Fill Hard Enough?”
• “Has Rain Inhibited Stabilization?”
• “Can I Customize Stabilization?”
• GeoGauge Can Enable:

• Monitoring of Material Cure Rate

• Direct Measurement of Material
Modulus

• Laboratory Design of Custom Mixes
& Determination of Indexes for
Evaluating Construction

• GeoGauge Specified By USAF for
Runway Infield Stabilization
• Used to Estimate Increases in CBR

y = 34.975Ln(x) - 5.7668
R 2 = 0.9827
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2 Weeks Old Stabilized, 9/ 20 , Sta. 505 0

2 Day Old Stabilized, 9/ 20, Sta. 504 5

1 Day Old Stabilized, 9/ 20 , Sta. 504 5

Unstabilized, 9/ 20 , Sta. 481 5

Stiffness

Dry
Density

Distance of
~ 13  Miles

Evaluation of Stabilization

Rehabilitated Sandy Clay Subgrade
Stabilized with Lime

New Mexico Route. 44, September, ’00
Koch Performance Roads
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Some Other ApplicationsSome Other Applications

• Specification Development
• Mechanistic Design Validation
• Buried Structures QC
• Utility Back-Fills QC
• Determination of HMA “Tender Zone”
• Evaluation of Controlled Low Strength Materials
• Quantification of Soil-Cement Micro-Cracking
• Cold Mix Asphalt QC


