
Viable & Practical Stiffness Based In-Place QC Testing of Compacted Subgrade Material

<u>Case Study</u> MnDOT District 2

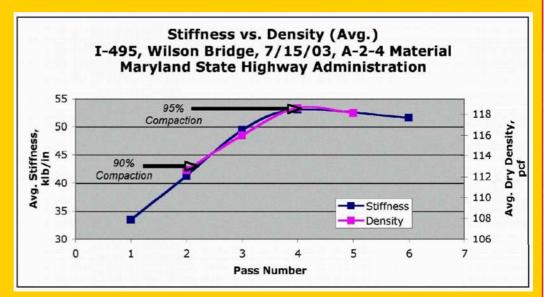
GeoGauge™

Problem

- Traditional Subgrade QC Testing
 - Does not Evaluate In-Place Strength & Uniformity
 - Does not Provide Real-Time Feedback
 - Contractor Cannot Make Immediate Corrections
 - Slows Process
 - Variability Undetected
 - Does not Support:
 - Modulus Based Mechanistic Design
 - Performance Specifications

- Implement Modulus or Stiffness Based QC Testing
 - Provide A Measure of Strength & Uniformity
 - Index Of Percent Compaction
 - Index Of Resilient Modulus For Future
 - Be Simple, Precise & Non-Invasive
 - Perform At A Rate Greater Than Compaction Process

- Method Developed By FHWA Study 2(212)
 - Optimum Compaction Occurs At Max. Lift Stiffness
 - At A Level Of Effort
 - At A Moisture Content
 - Percent Compaction Relates To Lift Stiffness At Controlled Moisture
 - Test Strip Used To Assign Target Stiffness For QC Testing
 - Humboldt GeoGauge To Measure Stiffness At Time Of Compaction
- Initially Over Sampling QC Measurements
- Specify Method On A Trial Basis
- If Successful, Broaden Use & Experience

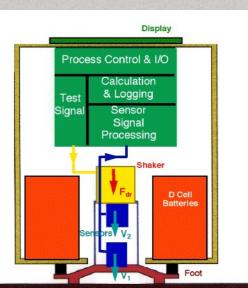


FHWA Study SPR-2(212)

- Compaction vs. Stiffness
- GeoGauge Performance Validated
 - Principle Of Operation

GeoGauge™

- Calibration
- Bias
- Precision
- Depth of Measure


Modified Proctor: 125.6 pcf @ 10.5% Moisture: 6.6 to 9.8% 13 ton sheep's foot roller Max. vibration & 3 mph speed 8" lift Similarity Between Density & Stiffness Compaction Curves $\sigma = 0.5266K+172.10$, R² = 0.9749 Where σ is density (pcf) & K is stiffness (klb/in)

BOLDT

Humboldt GeoGauge™

MBOLDT

- Measures Stiffness In 75 seconds
 - No Construction Delays
- Non Destructive
- 11" OD X 10" Tall, 22 lbs.
- No License or Safety Issues

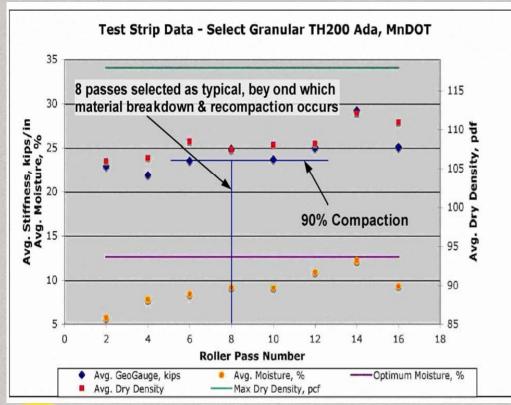
Soil

Trial Specification is First Step Best Way To Ensure Sufficient Data For Evaluating QC Testing Method & Implementing Future Use

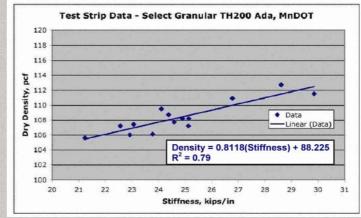
JMBOLDT

- TH200, Ada, MN, MnDOT District 2, Summer 2004
- Granular Subgrade, AASHTO A-1-b
- Two 12" Thick Lifts
- One Mile Of 2 Lane Roadway
- Test ~ Every 100' Per Sampling Patterns
 - Stiffness (GeoGauge)
 - Moisture (TDR or Oven)

E GeoGauge™

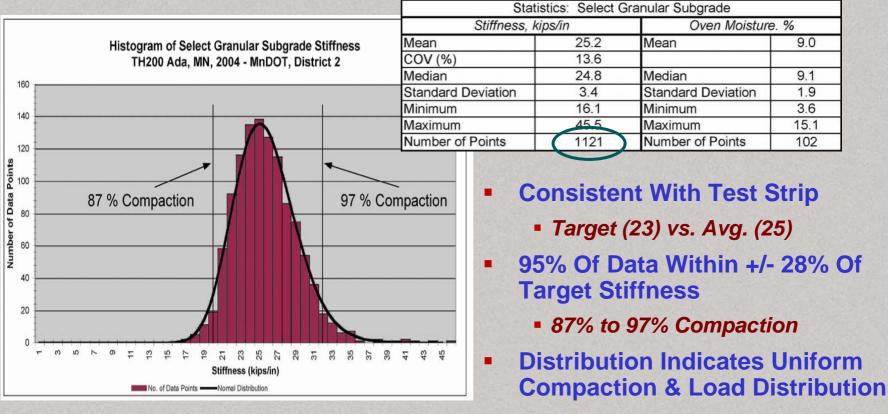

- If Stiffness Not Within +/- 5% Of Target
 - Re-Compact At The Discretion Of The Engineer

Colerance Altered re Results & Experience



Test Strip Data

23 klbf/in At 8 Passes Selected As Target Minimum (~90% Compaction)



2012/01/02		Select Granu	ular Test Str	ip	
Roller Pass #	Avg.	Avg. Dry	Max Dry	Avg.	Optimum
	GeoGauge,	Density.	Density,	Moisture,	Moisture,
	kips/in	pcf	pcf	%	%
2	22.9	106.0	117.9	5.7	12.6
4	21.9	106.4		7.8	
6	23.5	108.5		8.4	
8	24.9	107.5		9.2	
10	23.7	108.1		9.1	
12	25.0	108.2		10.9	
14	29.2	112.1		12.2	
16	25.1	111.0		9.3	

QC Test Data: Stiffness

MBOLDT

GeoGauge™

 Meets FHWA Guideline For 20 Year Life

Conclusions & Recommendations

Stiffness Based QC Testing Ensures & Facilitates Quality Compaction

- Provides Unprecedented Levels Of Quality
- Provides A Good Assessment Of:
 - Resistance To Loading
 - Structural Uniformity
- Density Will Be Weaned From Method
- Future Spec.: 19 Of 20 Stiffness Measurements Within +/- 28% Of Target
- Sampling Can Be At Traditional 500' Intervals
- Will Be Used Elsewhere In District 2 & Recommended to MnDOT In General

